The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Skew fields of noncommutative rational functions (preliminary version)”

K-quasiderivations

Caleb Emmons, Mike Krebs, Anthony Shaheen (2012)

Open Mathematics

Similarity:

A K-quasiderivation is a map which satisfies both the Product Rule and the Chain Rule. In this paper, we discuss several interesting families of K-quasiderivations. We first classify all K-quasiderivations on the ring of polynomials in one variable over an arbitrary commutative ring R with unity, thereby extending a previous result. In particular, we show that any such K-quasiderivation must be linear over R. We then discuss two previously undiscovered collections of (mostly) nonlinear...

Rational functions without poles in a compact set

W. Kucharz (2006)

Colloquium Mathematicae

Similarity:

Let X be an irreducible nonsingular complex algebraic set and let K be a compact subset of X. We study algebraic properties of the ring of rational functions on X without poles in K. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.

Extensions of Büchi's problem: Questions of decidability for addition and kth powers

Thanases Pheidas, Xavier Vidaux (2005)

Fundamenta Mathematicae

Similarity:

We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k...

A new rational and continuous solution for Hilbert's 17th problem.

Charles N. Delzell, Laureano González-Vega, Henri Lombardi (1992)

Extracta Mathematicae

Similarity:

In this note it is presented a new rational and continuous solution for Hilbert's 17th problem, which asks if an everywhere positive polynomial can be expressed as a sum of squares of rational functions. This solution (Theorem 1) improves the results in [2] in the sense that our parametrized solution is continuous and depends in a rational way on the coefficients of the problem (what is not the case in the solution presented in [2]). Moreover our method simplifies the proof and it is...