Some remarks on the theory of stochastic integration
Jia-An Yan (1991)
Séminaire de probabilités de Strasbourg
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jia-An Yan (1991)
Séminaire de probabilités de Strasbourg
Similarity:
Edwin Perkins (1985)
Séminaire de probabilités de Strasbourg
Similarity:
Hyungsok Ahn, Philip Protter (1994)
Séminaire de probabilités de Strasbourg
Similarity:
Watanabe, Shinzo (2009)
Journal Électronique d'Histoire des Probabilités et de la Statistique [electronic only]
Similarity:
Michel Métivier (1982)
Séminaire de probabilités de Strasbourg
Similarity:
Darrell Duffie (1985)
Séminaire de probabilités de Strasbourg
Similarity:
Jean Jacod (2002)
Séminaire de probabilités de Strasbourg
Similarity:
Kühn, Christoph, Stroh, Maximilian (2009)
Electronic Communications in Probability [electronic only]
Similarity:
Francis Hirsch, Bernard Roynette (2012)
ESAIM: Probability and Statistics
Similarity:
In this paper, we present a new proof of the celebrated theorem of Kellerer, stating that every integrable process, which increases in the convex order, has the same one-dimensional marginals as a martingale. Our proof proceeds by approximations, and calls upon martingales constructed as solutions of stochastic differential equations. It relies on a uniqueness result, due to Pierre, for a Fokker-Planck equation.
Jerzy Motyl, Joachim Syga (2006)
Discussiones Mathematicae Probability and Statistics
Similarity:
We introduce set-valued stochastic integrals driven by a square-integrable martingale and by a semimartingale. We investigate properties of both integrals.
Jean Jacod (1997)
Séminaire de probabilités de Strasbourg
Similarity: