Concerning the measurable boundaries of a real function
C. Goffman, R. Zink (1960)
Fundamenta Mathematicae
Similarity:
C. Goffman, R. Zink (1960)
Fundamenta Mathematicae
Similarity:
Michael J. Evans, Paul D. Humke (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We present a new characterization of Lebesgue measurable functions; namely, a function f:[0,1]→ ℝ is measurable if and only if it is first-return recoverable almost everywhere. This result is established by demonstrating a connection between almost everywhere first-return recovery and a first-return process for yielding the integral of a measurable function.
H. Ursell (1939)
Fundamenta Mathematicae
Similarity:
Mott, Thomas E. (1962)
Portugaliae mathematica
Similarity:
S. Taylor (1960)
Fundamenta Mathematicae
Similarity:
Jiří Matyska (1967)
Czechoslovak Mathematical Journal
Similarity:
A. M. Bruckner, Charles L. Thorne (1973)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity: