Automorphisms of -groups with cyclic commutator subgroup
Federico Menegazzo (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Federico Menegazzo (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Richard Byrd, Justin Lloyd, Franklin Pederson, James Stepp (1984)
Fundamenta Mathematicae
Similarity:
Willibald Dörfler (1978)
Mathematica Slovaca
Similarity:
Kures̆, Miroslav (2007)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Roman'kov, V.A., Chirkov, I.V., Shevelin, M.A. (2004)
Sibirskij Matematicheskij Zhurnal
Similarity:
J. Płonka (1979)
Colloquium Mathematicae
Similarity:
DeMeyer, Frank (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Marek Karaś (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.
Federico Menegazzo, Derek J. S. Robinson (1987)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
João Araújo (2003)
Colloquium Mathematicae
Similarity:
For a universal algebra 𝓐, let End(𝓐) and Aut(𝓐) denote, respectively, the endomorphism monoid and the automorphism group of 𝓐. Let S be a semigroup and let T be a characteristic subsemigroup of S. We say that ϕ ∈ Aut(S) is a lift for ψ ∈ Aut(T) if ϕ|T = ψ. For ψ ∈ Aut(T) we denote by L(ψ) the set of lifts of ψ, that is, L(ψ) = {ϕ ∈ Aut(S) | ϕ|T = ψ}. Let 𝓐 be an independence algebra of infinite rank and let S be a monoid of monomorphisms such that G = Aut(𝓐) ≤ S ≤ End(𝓐). In...