Automorphisms of -groups with cyclic commutator subgroup
Federico Menegazzo (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Federico Menegazzo (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Richard Byrd, Justin Lloyd, Franklin Pederson, James Stepp (1984)
Fundamenta Mathematicae
Similarity:
Willibald Dörfler (1978)
Mathematica Slovaca
Similarity:
Kures̆, Miroslav (2007)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Roman'kov, V.A., Chirkov, I.V., Shevelin, M.A. (2004)
Sibirskij Matematicheskij Zhurnal
Similarity:
J. Płonka (1979)
Colloquium Mathematicae
Similarity:
DeMeyer, Frank (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Marek Karaś (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.
Federico Menegazzo, Derek J. S. Robinson (1987)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
João Araújo (2003)
Colloquium Mathematicae
Similarity:
For a universal algebra 𝓐, let End(𝓐) and Aut(𝓐) denote, respectively, the endomorphism monoid and the automorphism group of 𝓐. Let S be a semigroup and let T be a characteristic subsemigroup of S. We say that ϕ ∈ Aut(S) is a lift for ψ ∈ Aut(T) if ϕ|T = ψ. For ψ ∈ Aut(T) we denote by L(ψ) the set of lifts of ψ, that is, L(ψ) = {ϕ ∈ Aut(S) | ϕ|T = ψ}. Let 𝓐 be an independence algebra of infinite rank and let S be a monoid of monomorphisms such that G = Aut(𝓐) ≤ S ≤ End(𝓐). In...