On presented dimensions of modules and rings.
Zhou, Dexu, Gong, Zhiwei (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Zhou, Dexu, Gong, Zhiwei (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Caenepeel, S., Guédénon, T. (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Raynaud (1972)
Compositio Mathematica
Similarity:
S. Yuan (1968)
Bulletin de la Société Mathématique de France
Similarity:
Moss E. Sweedler (1974)
Publications Mathématiques de l'IHÉS
Similarity:
Gary Birkenmeier (1983)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Enochs, Edgar E. (1988)
Portugaliae mathematica
Similarity:
Goro Azumaya (1992)
Publicacions Matemàtiques
Similarity:
We first prove that every countably presented module is a pure epimorphic image of a countably generated pure-projective module, and by using this we prove that if every countably generated pure-projective module is pure-injective then every module is pure-injective, while if in any countably generated pure-projective module every countably generated pure-projective pure submodule is a direct summand then every module is pure-projective.