Displaying similar documents to “Notes on the integral geometry in the hyperbolic plane”

Some Connections between Minkowski and Hyperbolic Planes

Jarosław Kosiorek, Andrzej Matraś (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The model of the Minkowski plane in the projective plane with a fixed conic sheds a new light on the connection between the Minkowski and hyperbolic geometries. The construction of the Minkowski plane in a hyperbolic plane over a Euclidean field is given. It is also proved that the geometry in an orthogonal bundle of circles is hyperbolic in a natural way.

The Markovian hyperbolic triangulation

Nicolas Curien, Wendelin Werner (2013)

Journal of the European Mathematical Society

Similarity:

We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

Oğuzhan Demirel (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

The Banach-Tarski paradox for the hyperbolic plane (II)

Jan Mycielski, Grzegorz Tomkowicz (2013)

Fundamenta Mathematicae

Similarity:

The second author found a gap in the proof of the main theorem in [J. Mycielski, Fund. Math. 132 (1989), 143-149]. Here we fill that gap and add some remarks about the geometry of the hyperbolic plane ℍ².

The hyperbolic triangle centroid

Abraham A. Ungar (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques...