The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Note on the absolute convergence of Fourier series of a function of Wiener’s class V r

On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system

G. Gát (1998)

Studia Mathematica

Similarity:

Let G be the Walsh group. For f L 1 ( G ) we prove the a. e. convergence σf → f(n → ∞), where σ n is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator σ * f s u p n | σ n f | . We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, σ * f 1 c | f | H , where H is the Hardy space on the Walsh group.

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...