The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Commutative rings whose principal ideals are annihilators”

On rings with a unique proper essential right ideal

O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2004)

Fundamenta Mathematicae

Similarity:

Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and...

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent: (ZIP 1) If the right anihilator X of a subset X of R is zero, then X1 = 0 for a finite subset X1 ⊆ X. (ZIP 2) If L is a left ideal and if L = 0, then L1 ...

Polynomial rings over Jacobson-Hilbert rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

A ring R is (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a ring R is again . In this paper we show this is not the case.

AE-rings

Manfred Dugas, Shalom Feigelstock (2004)

Rendiconti del Seminario Matematico della Università di Padova

Similarity: