The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pointwise estimates for modified positive linear operators”

On an Extremal Problem concerning Bernstein Operators

Gonska, Heinz, Zhou, Ding-Xuan (1995)

Serdica Mathematical Journal

Similarity:

* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China. The best constant problem for Bernstein operators with respect to the second modulus of smoothness is considered. We show that for any 1/2 ≤ a < 1, there is an N(a) ∈ N such that for n ≥ N(a), 1−a≤k, n≤a, sup | Bn (f, k/n) − f(k/n) | ≤ cω2(f, 1/√n), where c is a constant,0 < c <...