Displaying similar documents to “Real holomorphy rings and the complete real spectrum”

Conditions under which R ( x ) and R x are almost Q-rings

Hani A. Khashan, H. Al-Ezeh (2007)

Archivum Mathematicum

Similarity:

All rings considered in this paper are assumed to be commutative with identities. A ring R is a Q -ring if every ideal of R is a finite product of primary ideals. An almost Q -ring is a ring whose localization at every prime ideal is a Q -ring. In this paper, we first prove that the statements, R is an almost Z P I -ring and R [ x ] is an almost Q -ring are equivalent for any ring R . Then we prove that under the condition that every prime ideal of R ( x ) is an extension of a prime ideal of R , the ring R ...

Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings

Vijay Kumar Bhat (2013)

Czechoslovak Mathematical Journal

Similarity:

Let R be a ring. We recall that R is called a near pseudo-valuation ring if every minimal prime ideal of R is strongly prime. Let now σ be an automorphism of R and δ a σ -derivation of R . Then R is said to be an almost δ -divided ring if every minimal prime ideal of R is δ -divided. Let R be a Noetherian ring which is also an algebra over ( is the field of rational numbers). Let σ be an automorphism of R such that R is a σ ( * ) -ring and δ a σ -derivation of R such that σ ( δ ( a ) ) = δ ( σ ( a ) ) for all a R . Further,...

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.