A note on moments of .
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
Habiba Kadiri (2013)
Acta Arithmetica
Similarity:
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.
Norman Levinson (1972)
Acta Arithmetica
Similarity:
Ramachandra, K., Sankaranarayanan, A. (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
R. R. Hall (2006)
Acta Arithmetica
Similarity:
A. Laurinčikas (1990)
Acta Arithmetica
Similarity:
Timothy Trudgian (2011)
Acta Arithmetica
Similarity:
Aleksandar Ivić (1995)
Publications de l'Institut Mathématique
Similarity: