Displaying similar documents to “A Note on Preserved Smoothness”

A Remark On S.M. Bates' Theorem

Hájek, Petr (1999)

Serdica Mathematical Journal

Similarity:

In his paper [1], Bates investigates the existence of nonlinear, but highly smooth, surjective operators between various classes of Banach spaces. Modifying his basic method, he obtains the following striking results.

Some Applications of Simons’ Inequality

Godefroy, Gilles (2000)

Serdica Mathematical Journal

Similarity:

We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.

Representable Banach Spaces and Uniformly Gateaux-Smooth Norms

Frontisi, Julien (1996)

Serdica Mathematical Journal

Similarity:

It is proved that a representable non-separable Banach space does not admit uniformly Gâteaux-smooth norms. This is true in particular for C(K) spaces where K is a separable non-metrizable Rosenthal compact space.

Analytic Renormings of C(K) Spaces

Hájek, Petr (1996)

Serdica Mathematical Journal

Similarity:

The aim of our present note is to show the strength of the existence of an equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth renormings. It was Haydon who first showed in [8] that C(K) spaces for K countable admit an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent C∞-Fréchet smooth norm. Recently, it was shown in [3] that C(K) spaces for K countable...

Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis

Rychter, Jan (2000)

Serdica Mathematical Journal

Similarity:

*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler. It is shown that a Banach space X admits an equivalent uniformly Gateaux differentiable norm if it has an unconditional basis and X* admits an equivalent norm which is uniformly rotund in every direction.

Smoothness in Banach spaces. Selected problems.

Marian Fabian, Vicente Montesinos, Václav Zizler (2006)

RACSAM

Similarity:

This is a short survey on some recent as well as classical results and open problems in smoothness and renormings of Banach spaces. Applications in general topology and nonlinear analysis are considered. A few new results and new proofs are included. An effort has been made that a young researcher may enjoy going through it without any special pre-requisites and get a feeling about this area of Banach space theory. Many open problems of different level of difficulty are discussed. For...

The topological complexity of sets of convex differentiable functions.

Mohammed Yahdi (1998)

Revista Matemática Complutense

Similarity:

Let C(X) be the set of all convex and continuous functions on a separable infinite dimensional Banach space X, equipped with the topology of uniform convergence on bounded subsets of X. We show that the subset of all convex Fréchet-differentiable functions on X, and the subset of all (not necessarily equivalent) Fréchet-differentiable norms on X, reduce every coanalytic set, in particular they are not Borel-sets.

Uniform Eberlein Compacta and Uniformly Gâteaux Smooth Norms

Fabian, Marián, Hájek, Petr, Zizler, Václav (1997)

Serdica Mathematical Journal

Similarity:

* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada). It is shown that the dual unit ball BX∗ of a Banach space X∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly compactly generated space. The bidual unit ball BX∗∗ of a Banach space X∗∗ in its weak star topology is a uniform Eberlein compact if and only if X admits a weakly uniformly...

Fragmentability of the Dual of a Banach Space with Smooth Bump

Kortezov, I. (1998)

Serdica Mathematical Journal

Similarity:

We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.