Displaying similar documents to “Exponential stability for periodic evolution families of bounded linear operators.”

On the exponential stability and dichotomy of C 0 -semigroups

Phóng Vũ (1999)

Studia Mathematica

Similarity:

A characterization of exponentially dichotomic and exponentially stable C 0 -semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven’s recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.

Almost periodic and strongly stable semigroups of operators

Vũ Phóng (1997)

Banach Center Publications

Similarity:

This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators T n : n = 0 , 1 , . . . on a Banach space X (discrete one-parameter semigroups), one-parameter C 0 -semigroups T ( t ) : t 0 on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family...

Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces

Nguyen Thieu Huy, Ngo Quy Dang (2016)

Annales Polonici Mathematici

Similarity:

We prove the existence and conditional stability of periodic solutions to semilinear evolution equations of the form u̇ = A(t)u + g(t,u(t)), where the operator-valued function t ↦ A(t) is 1-periodic, and the operator g(t,x) is 1-periodic with respect to t for each fixed x and satisfies the φ-Lipschitz condition ||g(t,x₁) - g(t,x₂)|| ≤ φ(t)||x₁-x₂|| for φ(t) being a real and positive function which belongs to an admissible function space. We then apply the results to study the existence,...