Displaying similar documents to “Automorphisms of Verardi groups: small upper triangular matrices over rings.”

Finite-finitary, polycyclic-finitary and Chernikov-finitary automorphism groups

B. A. F. Wehrfritz (2015)

Colloquium Mathematicae

Similarity:

If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case...

Units in group rings of crystallographic groups

Karel Dekimpe (2003)

Fundamenta Mathematicae

Similarity:

In [3], the authors initiated a technique of using affine representations to study the groups of units of integral group rings of crystallographic groups. In this paper, we use this approach for some special classes of crystallographic groups. For a first class of groups we obtain a normal complement for the group inside the group of normalized units. For a second class of groups we show that the Zassenhaus conjectures ZC1 and ZC3 are valid. This generalizes the results known for the...

N-determined 2-compact groups. I

Jesper M. Møller (2007)

Fundamenta Mathematicae

Similarity:

This is the first part of a paper that classifies 2-compact groups. In this first part we formulate a general classification scheme for 2-compact groups in terms of their maximal torus normalizer pairs. We apply this general classification procedure to the simple 2-compact groups of the A-family and show that any simple 2-compact group that is locally isomorphic to PGL(n+1,ℂ) is uniquely N-determined. Thus there are no other 2-compact groups in the A-family than the ones we already know....