Displaying similar documents to “Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings.”

Total edge irregularity strength of trees

Jaroslav Ivančo, Stanislav Jendrol' (2006)

Discussiones Mathematicae Graph Theory

Similarity:

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that...

On graceful trees.

Hegde, Suresh Manjanath, Shetty, Sudhakar (2002)

Applied Mathematics E-Notes [electronic only]

Similarity:

On Super Edge-Antimagic Total Labeling Of Subdivided Stars

Muhammad Javaid (2014)

Discussiones Mathematicae Graph Theory

Similarity:

In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup- port for the correctness of this conjecture by formulating some super (a, d)- edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n5, n6, . . . , nr) for different values of the edge- antimagic labeling parameter d, where n ≥ 3 is odd, nm = 2m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.