The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings.”

Total edge irregularity strength of trees

Jaroslav Ivančo, Stanislav Jendrol' (2006)

Discussiones Mathematicae Graph Theory

Similarity:

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that...

On graceful trees.

Hegde, Suresh Manjanath, Shetty, Sudhakar (2002)

Applied Mathematics E-Notes [electronic only]

Similarity:

On Super Edge-Antimagic Total Labeling Of Subdivided Stars

Muhammad Javaid (2014)

Discussiones Mathematicae Graph Theory

Similarity:

In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup- port for the correctness of this conjecture by formulating some super (a, d)- edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n5, n6, . . . , nr) for different values of the edge- antimagic labeling parameter d, where n ≥ 3 is odd, nm = 2m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.