The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Derivatives of integrating functions for orthonormal polynomials with exponential-type weights.”

On the weak non-defectivity of veronese embeddings of projective spaces

Edoardo Ballico (2005)

Open Mathematics

Similarity:

Fix integers n, x, k such that n≥3, k>0, x≥4, (n, x)≠(3, 4) and k(n+1)<(nn+x). Here we prove that the order x Veronese embedding ofP n is not weakly (k−1)-defective, i.e. for a general S⊃P n such that #(S) = k+1 the projective space | I 2S (x)| of all degree t hypersurfaces ofP n singular at each point of S has dimension (n/n+x )−1− k(n+1) (proved by Alexander and Hirschowitz) and a general F∈| I 2S (x)| has an ordinary double point at each P∈ S and Sing (F)=S.

On coefficient inequalities in the Carathéodory class of functions

Adam Lecko (2000)

Annales Polonici Mathematici

Similarity:

Some inequalities are proved for coefficients of functions in the class P(α), where α ∈ [0,1), of functions with real part greater than α. In particular, new inequalities for coefficients in the Carathéodory class P(0) are given.