Displaying similar documents to “Large quadratic programming problems generated by rigid body simulation.”

Reformulations in Mathematical Programming: Definitions and Systematics

Leo Liberti (2009)

RAIRO - Operations Research

Similarity:

A reformulation of a mathematical program is a formulation which shares some properties with, but is in some sense better than, the original program. Reformulations are important with respect to the choice and efficiency of the solution algorithms; furthermore, it is desirable that reformulations can be carried out automatically. Reformulation techniques are widespread in mathematical programming but interestingly they have never been studied under a unified framework. This paper attempts...

Quadratic 0–1 programming: Tightening linear or quadratic convex reformulation by use of relaxations

Alain Billionnet, Sourour Elloumi, Marie-Christine Plateau (2008)

RAIRO - Operations Research

Similarity:

Many combinatorial optimization problems can be formulated as the minimization of a 0–1 quadratic function subject to linear constraints. In this paper, we are interested in the exact solution of this problem through a two-phase general scheme. The first phase consists in reformulating the initial problem either into a compact mixed integer linear program or into a 0–1 quadratic convex program. The second phase simply consists in submitting the reformulated problem to a standard solver....