Displaying similar documents to “On estimation of a covariance function of stationary errors in a nonlinear regression model.”

Adaptive trimmed likelihood estimation in regression

Tadeusz Bednarski, Brenton R. Clarke, Daniel Schubert (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper we derive an asymptotic normality result for an adaptive trimmed likelihood estimator of regression starting from initial high breakdownpoint robust regression estimates. The approach leads to quickly and easily computed robust and efficient estimates for regression. A highlight of the method is that it tends automatically in one algorithm to expose the outliers and give least squares estimates with the outliers removed. The idea is to begin with a rapidly computed consistent...

Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors

František Štulajter (1991)

Applications of Mathematics

Similarity:

The least squres invariant quadratic estimator of an unknown covariance function of a stochastic process is defined and a sufficient condition for consistency of this estimator is derived. The mean value of the observed process is assumed to fulfil a linear regresion model. A sufficient condition for consistency of the least squares estimator of the regression parameters is derived, too.

On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints

Sandra Donevska, Eva Fišerová, Karel Hron (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned...