### Special incidence structures of type $(p,n)$

František Machala (2000)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

František Machala (2000)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Václav Havel (1965)

Archivum Mathematicum

Similarity:

František Machala (2001)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Singer, Dan (2004)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Gomez-Calderon, Javier (2006)

International Journal of Mathematics and Mathematical Sciences

Similarity:

František Machala (2003)

Czechoslovak Mathematical Journal

Similarity:

Every incidence structure $\mathcal{J}$ (understood as a triple of sets $(G,M,I)$, $I\subseteq G\times M$) admits for every positive integer $p$ an incidence structure ${\mathcal{J}}^{p}=({G}^{p},{M}^{p},{\mathrm{I}}^{p})$ where ${G}^{p}$ (${M}^{p}$) consists of all independent $p$-element subsets in $G$ ($M$) and ${\mathrm{I}}^{p}$ is determined by some bijections. In the paper such incidence structures $\mathcal{J}$ are investigated the ${\mathcal{J}}^{p}$’s of which have their incidence graphs of the simple join form. Some concrete illustrations are included with small sets $G$ and $M$.

Foata, Dominique, Zeilberger, Doron (1994)

The Electronic Journal of Combinatorics [electronic only]

Similarity: