## Displaying similar documents to “A choice of criterion parameters in a linearization of regression models.”

### Linearization conditions for regression models with unknown variance parameter

Applications of Mathematics

Similarity:

In the case of the nonlinear regression model, methods and procedures have been developed to obtain estimates of the parameters. These methods are much more complicated than the procedures used if the model considered is linear. Moreover, unlike the linear case, the properties of the resulting estimators are unknown and usually depend on the true values of the estimated parameters. It is sometimes possible to approximate the nonlinear model by a linear one and use the much more developed...

### Linearization regions for confidence ellipsoids

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

If an observation vector in a nonlinear regression model is normally distributed, then an algorithm for a determination of the exact $\left(1-\alpha \right)$-confidence region for the parameter of the mean value of the observation vector is well known. However its numerical realization is tedious and therefore it is of some interest to find some condition which enables us to construct this region in a simpler way.

### Variance components and nonlinearity

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Unknown parameters of the covariance matrix (variance components) of the observation vector in regression models are an unpleasant obstacle in a construction of the best estimator of the unknown parameters of the mean value of the observation vector. Estimators of variance componets must be utilized and then it is difficult to obtain the distribution of the estimators of the mean value parameters. The situation is more complicated in the case of nonlinearity of the regression model....

### Underparametrization of weakly nonlinear regression models

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A large number of parameters in regression models can be serious obstacle for processing and interpretation of experimental data. One way how to overcome it is an elimination of some parameters. In some cases it need not deteriorate statistical properties of estimators of useful parameters and can help to interpret them. The problem is to find conditions which enable us to decide whether such favourable situation occurs.

### Linearization regions for a confidence ellipsoid in singular nonlinear regression models

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region. ...