Displaying similar documents to “Some new Ramsey colorings.”

Rainbow Ramsey theory.

Jungić, Veselin, Nešetřil, Jaroslav, Radoičić, Radoš (2005)

Integers

Similarity:

Semi-definite positive programming relaxations for graph K 𝐧 -coloring in frequency assignment

Philippe Meurdesoif, Benoît Rottembourg (2001)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper we will describe a new class of coloring problems, arising from military frequency assignment, where we want to minimize the number of distinct n -uples of colors used to color a given set of n -complete-subgraphs of a graph. We will propose two relaxations based on Semi-Definite Programming models for graph and hypergraph coloring, to approximate those (generally) NP-hard problems, as well as a generalization of the works of Karger et al. for hypergraph coloring, to find...

Rainbow Ramsey theorems for colorings establishing negative partition relations

András Hajnal (2008)

Fundamenta Mathematicae

Similarity:

Given a function f, a subset of its domain is a rainbow subset for f if f is one-to-one on it. We start with an old Erdős problem: Assume f is a coloring of the pairs of ω₁ with three colors such that every subset A of ω₁ of size ω₁ contains a pair of each color. Does there exist a rainbow triangle? We investigate rainbow problems and results of this style for colorings of pairs establishing negative "square bracket" relations.

Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs

P. Francis, S. Francis Raj (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...