The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Uniform upper bound for a stable measure of a small ball.”

On SαS density function

Grażyna Mazurkiewicz (2005)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper, we study some analytical properties of the symmetric α-stable density function.

On the infinite divisibility of scale mixtures of symmetric α-stable distributions, α ∈ (0,1]

Grażyna Mazurkiewicz (2010)

Banach Center Publications

Similarity:

The paper contains a new and elementary proof of the fact that if α ∈ (0,1] then every scale mixture of a symmetric α-stable probability measure is infinitely divisible. This property is known to be a consequence of Kelker's result for the Cauchy distribution and some nontrivial properties of completely monotone functions. It is known that this property does not hold for α = 2. The problem discussed in the paper is still open for α ∈ (1,2).

About the density of spectral measure of the two-dimensional SaS random vector

Marta Borowiecka-Olszewska, Jolanta K. Misiewicz (2003)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper, we consider a symmetric α-stable p-sub-stable two-dimensional random vector. Our purpose is to show when the function e x p - ( | a | p + | b | p ) α / p is a characteristic function of such a vector for some p and α. The solution of this problem we can find in [3], in the language of isometric embeddings of Banach spaces. Our proof is based on simple properties of stable distributions and some characterization given in [4].