The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Stability estimate for strong solutions of the Navier-Stokes system and its applications.”

On the instantaneous spreading for the Navier–Stokes system in the whole space

Lorenzo Brandolese, Yves Meyer (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the spatial behavior of the velocity field u ( x , t ) of a fluid filling the whole space n ( n 2 ) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h ( x , t ) u k ( x , t ) d x = c ( t ) δ h , k under more general assumptions on the localization of u . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

Asymptotics and stability for global solutions to the Navier-Stokes equations

Isabelle Gallagher, Dragos Iftimie, Fabrice Planchon (2003)

Annales de l’institut Fourier

Similarity:

We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.