An improvement to Mathon's cyclotomic Ramsey colorings.
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Xu, Xiaodong, Xie, Zheng, Exoo, Geoffrey, Radziszowski, Stanisław P. (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Mubayi, Dhruv (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Tomasz Dzido, Renata Zakrzewska (2006)
Discussiones Mathematicae Graph Theory
Similarity:
The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kₚ with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kₚ induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4,4) ≤ 15.
P. Francis, S. Francis Raj (2016)
Discussiones Mathematicae Graph Theory
Similarity:
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...
Robertson, Aaron (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Exoo, Geoffrey (1998)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Elliot Krop, Irina Krop (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color...
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)
Discussiones Mathematicae Graph Theory
Similarity:
We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers....
Dennis Geller, Hudson Kronk (1974)
Fundamenta Mathematicae
Similarity:
Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)
Discussiones Mathematicae Graph Theory
Similarity:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...
Dzido, Tomasz, Nowik, Andrzej, Szuca, Piotr (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity: