A basic decomposition result related to the notion of the rank of a matrix and applications.
Mortici, Cristinel (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mortici, Cristinel (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Dobrynin, V.Y. (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Chao Ma (2017)
Open Mathematics
Similarity:
Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.
Duanmei Zhou, Guoliang Chen, Jiu Ding (2017)
Open Mathematics
Similarity:
Let A = PQT, where P and Q are two n × 2 complex matrices of full column rank such that QTP is singular. We solve the quadratic matrix equation AXA = XAX. Together with a previous paper devoted to the case that QTP is nonsingular, we have completely solved the matrix equation with any given matrix A of rank-two.
Miroslav Fiedler (2003)
Mathematica Bohemica
Similarity:
We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.
Tian, Yongge, Cheng, Shizhen (2003)
The New York Journal of Mathematics [electronic only]
Similarity:
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Arthur Kennedy-Cochran-Patrick, Sergeĭ Sergeev, Štefan Berežný (2019)
Kybernetika
Similarity:
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
Cao, Chongguang, Tang, Xiaomin (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
da Fonseca, C.M. (1998)
Portugaliae Mathematica
Similarity: