Displaying similar documents to “On the derivation of the nonlinear discrete equations numerically integrating the Euler PDEs.”

Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared...

Description of the multi-dimensional finite volume solver EULER

Pavel Šolín, Karel Segeth (2002)

Applications of Mathematics

Similarity:

This paper is aimed at the description of the multi-dimensional finite volume solver EULER, which has been developed for the numerical solution of the compressible Euler equations during several last years. The present overview of numerical schemes and the explanation of numerical techniques and tricks which have been used for EULER could be of certain interest not only for registered users but also for numerical mathematicians who have decided to implement a finite volume solver themselves....

Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each...