The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Tight bounds on the algebraic connectivity of a balanced binary tree.”

Bounds on the subdominant eigenvalue involving group inverses with applications to graphs

Stephen J. Kirkland, Neumann, Michael, Bryan L. Shader (1998)

Czechoslovak Mathematical Journal

Similarity:

Let A be an n × n symmetric, irreducible, and nonnegative matrix whose eigenvalues are λ 1 > λ 2 ... λ n . In this paper we derive several lower and upper bounds, in particular on λ 2 and λ n , but also, indirectly, on μ = max 2 i n | λ i | . The bounds are in terms of the diagonal entries of the group generalized inverse, Q # , of the singular and irreducible M-matrix Q = λ 1 I - A . Our starting point is a spectral resolution for Q # . We consider the case of equality in some of these inequalities and we apply our results to the algebraic connectivity...