Displaying similar documents to “Global solutions for a nonlinear wave equation with the p -Laplacian operator.”

Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation

Jong Yeoul Park, Sun Hye Park (2006)

Czechoslovak Mathematical Journal

Similarity:

We consider the damped semilinear viscoelastic wave equation u ' ' - Δ u + 0 t h ( t - τ ) div { a u ( τ ) } d τ + g ( u ' ) = 0 in Ω × ( 0 , ) with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.

Local existence of solutions of the free boundary problem for the equations of compressible barotropic viscous self-gravitating fluids

G. Ströhmer, W. Zajączkowski (1999)

Applicationes Mathematicae

Similarity:

Local existence of solutions is proved for equations describing the motion of a viscous compressible barotropic and self-gravitating fluid in a domain bounded by a free surface. First by the Galerkin method and regularization techniques the existence of solutions of the linearized momentum equations is proved, next by the method of successive approximations local existence to the nonlinear problem is shown.