Displaying similar documents to “Substantial boundary points for plane domains and Gardiner's conjecture.”

The boundary absolute continuity of quasiconformal mappings (II).

Juha Heinonen (1996)

Revista Matemática Iberoamericana

Similarity:

In this paper a quite complete picture is given of the absolute continuity on the boundary of a quasiconformal map B → D, where B is the unit 3-ball and D is a Jordan domain in R with boundary 2-rectifiable in the sense of geometric measure theory. Moreover, examples are constructed, for each n ≥ 3, showing that quasiconformal maps from the unit n-ball onto Jordan domains with boundary (n - 1)-rectifiable need not have absolutely continuous boundary values.

Quasiconformal mappings onto John domains.

Juha Heinonen (1989)

Revista Matemática Iberoamericana

Similarity:

In this paper we study quasiconformal homeomorphisms of the unit ball B = B = {x ∈ R: |x| < 1} of R onto John domains. We recall that John domains were introduced by F. John in his study of rigidity of local quasi-isometries [J]; the term John domain was coined by O. Martio and J. Sarvas seventeen years later [MS]. From the various equivalent characterizations we shall adapt the following definition based on diameter carrots, cf. [V4], [V5], [NV].

On a theorem of Lindelöf

Vladimir Gutlyanskii, Olli Martio, Vladimir Ryazanov (2011)

Annales UMCS, Mathematica

Similarity:

We give a quasiconformal version of the proof for the classical Lindelöf theorem: Let f map the unit disk D conformally onto the inner domain of a Jordan curve C. Then C is smooth if and only if arh f'(z) has a continuous extension to D. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.

Reduced Bers boundaries of Teichmüller spaces

Ken’ichi Ohshika (2014)

Annales de l’institut Fourier

Similarity:

We consider a quotient space of the Bers boundary of Teichmüller space, which we call the reduced Bers boundary, by collapsing each quasi-conformal deformation space lying there into a point.This boundary turns out to be independent of the basepoint, and the action of the mapping class group extends continuously to this boundary.This is an affirmative answer to Thurston’s conjecture.He also conjectured that this boundary is homeomorphic to the unmeasured lamination space by the correspondence...