New prolific constructions of strongly regular graphs.
Fon-Der-Flaass, Dmitry G. (2002)
Advances in Geometry
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Fon-Der-Flaass, Dmitry G. (2002)
Advances in Geometry
Similarity:
Fon-Der-Flaass, D.G. (2005)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Spence, E. (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gera, Ralucca, Shen, Jian (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Coolsaet, Kris, Degraer, Jan, Spence, Edward (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gutman, I. (1996)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Bonato, Anthony, Holzmann, W.H., Kharaghani, Hadi (2001)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Barát, János, Matoušek, Jirí, Wood, David R. (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Simic, Slobodan K. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Dragoš Cvetković, Tatjana Davidović (2011)
Zbornik Radova
Similarity:
H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar (2009)
Publications de l'Institut Mathématique
Similarity:
Allen, Peter, Lozin, Vadim, Rao, Michaël (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
S. Monikandan, J. Balakumar (2014)
Discussiones Mathematicae Graph Theory
Similarity:
A graph is said to be reconstructible if it is determined up to isomor- phism from the collection of all its one-vertex deleted unlabeled subgraphs. Reconstruction Conjecture (RC) asserts that all graphs on at least three vertices are reconstructible. In this paper, we prove that interval-regular graphs and some new classes of graphs are reconstructible and show that RC is true if and only if all non-geodetic and non-interval-regular blocks G with diam(G) = 2 or diam(Ḡ) = diam(G) = 3...