The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Computing the integral closure of an affine semigroup.”

On the Betti numbers of the real part of a three-dimensional torus embedding

Jan Ratajski (1993)

Colloquium Mathematicae

Similarity:

Let X be the three-dimensional, complete, nonsingular, complex torus embedding corresponding to a fan S 3 and let V be the real part of X (for definitions see [1] or [3]). The aim of this note is to give a simple combinatorial formula for calculating the Betti numbers of V.

Centers in domains with quadratic growth

Agata Smoktunowicz (2005)

Open Mathematics

Similarity:

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.