Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane.
Kalaj, David, Pavlović, Miroslav (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Kalaj, David, Pavlović, Miroslav (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Partyka, Dariusz, Sakan, Ken-ichi (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Mateljević, M., Vuorinen, M. (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Kalaj, David, Mateljević, Miodrag (2008)
Novi Sad Journal of Mathematics
Similarity:
David Kalaj (2011)
Studia Mathematica
Similarity:
We extend the Rado-Choquet-Kneser theorem to mappings with Lipschitz boundary data and essentially positive Jacobian at the boundary without restriction on the convexity of image domain. The proof is based on a recent extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi and it uses an approximation scheme. Some applications to families of quasiconformal harmonic mappings between Jordan domains are given.
Brakalova, Melkana A., Jenkins, James A. (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Luděk Kleprlík (2014)
Open Mathematics
Similarity:
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
Reich, Edgar (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Pekka Koskela (1994)
Revista Matemática Iberoamericana
Similarity:
We establish an inverse Sobolev lemma for quasiconformal mappings and extend a weaker version of the Sobolev lemma for quasiconformal mappings of the unit ball of R to the full range 0 < p < n. As an application we obtain sharp integrability theorems for the derivative of a quasiconformal mapping of the unit ball of R in terms of the growth of the mapping.
Kovalev, Leonid V. (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Gutlyanskij, V.Ya., Ryazanov, V.I. (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity: