Displaying similar documents to “Anticonformal automorphisms and Schottky coverings.”

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Similarity:

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...

Basis of homology adapted to the trigonal automorphism of a Riemann surface.

Helena B. Campos (2007)

RACSAM

Similarity:

A closed (compact without boundary) Riemann surface S of genus g is said to be trigonal if there is a three sheeted covering (a trigonal morphism) from S to the Riemann sphere, ƒ : S →Ĉ. If there is an automorphism of period three, φ, on S permuting the sheets of the covering, we shall call S cyclic trigonal and will be called trigonal automorphism. In this paper we determine the intersection matrix on the first homology group of a cyclic trigonal Riemann surface on an adapted basis...

Automorphisms of Riemann surfaces with two fixed points

Tomasz Szemberg (1991)

Annales Polonici Mathematici

Similarity:

We give an upper bound for the order of an automorphism of a Riemann surface with two fixed points. The main results are presented in Theorems 1.4 and 2.4.

On pq-hyperelliptic Riemann surfaces

Ewa Tyszkowska (2005)

Colloquium Mathematicae

Similarity:

A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of...

The full automorphism group of the Kulkarni surface.

Peter Turbek (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

The full automorphism group of the Kulkarni surface is explicitly determined. It is employed to give three defining equations of the Kulkarni surface; each equation exhibits a symmetry of the surface as complex conjugation.