The hyperbolic metric in a rectangle. II.
Beardon, Alan F. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Beardon, Alan F. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Baernstein, A.II, Eremenko, A., Fryntov, A., Solynin, A. (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Yamashita, Shinji (1994)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Bochorishvili, R., Jaiani, D. (1999)
Bulletin of TICMI
Similarity:
J. E. Valentine, S. G. Wayment (1972)
Colloquium Mathematicae
Similarity:
Avalishvili, G., Gordeziani, D. (1999)
Bulletin of TICMI
Similarity:
J. Kisyński (1970)
Colloquium Mathematicae
Similarity:
R. Krasnodębski (1970)
Colloquium Mathematicae
Similarity:
Michał Kisielewicz (1975)
Annales Polonici Mathematici
Similarity:
Jan Dymara, Damian Osajda (2007)
Fundamenta Mathematicae
Similarity:
We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.
Alexander Macfarlane
Similarity:
Sudhanshu K. Ghoshal, Abha Ghoshal, M. Abu-Masood (1977)
Annales Polonici Mathematici
Similarity:
Oğuzhan Demirel (2009)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.