A basic decomposition result related to the notion of the rank of a matrix and applications.
Mortici, Cristinel (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Mortici, Cristinel (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Miroslav Fiedler (2003)
Mathematica Bohemica
Similarity:
We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.
Chao Ma (2017)
Open Mathematics
Similarity:
Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.
Duanmei Zhou, Guoliang Chen, Jiu Ding (2017)
Open Mathematics
Similarity:
Let A = PQT, where P and Q are two n × 2 complex matrices of full column rank such that QTP is singular. We solve the quadratic matrix equation AXA = XAX. Together with a previous paper devoted to the case that QTP is nonsingular, we have completely solved the matrix equation with any given matrix A of rank-two.
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Cao, Chongguang, Tang, Xiaomin (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Arthur Kennedy-Cochran-Patrick, Sergeĭ Sergeev, Štefan Berežný (2019)
Kybernetika
Similarity:
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
Štefan Schwarz (1985)
Mathematica Slovaca
Similarity: