Displaying similar documents to “Geometric quasi-isometric embeddings into Thompson's group F .”

Some Results on Maps That Factor through a Tree

Roger Züst (2015)

Analysis and Geometry in Metric Spaces

Similarity:

We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map...

Quasi-linear maps

D. J. Grubb (2008)

Fundamenta Mathematicae

Similarity:

A quasi-linear map from a continuous function space C(X) is one which is linear on each singly generated subalgebra. We show that the collection of quasi-linear functionals has a Banach space pre-dual with a natural order. We then investigate quasi-linear maps between two continuous function spaces, classifying them in terms of generalized image transformations.

Versatile asymmetrical tight extensions

Olivier Olela Otafudu, Zechariah Mushaandja (2017)

Topological Algebra and its Applications

Similarity:

We show that the image of a q-hyperconvex quasi-metric space under a retraction is q-hyperconvex. Furthermore, we establish that quasi-tightness and quasi-essentiality of an extension of a T0-quasi-metric space are equivalent.