Optimal four-dimensional codes over .
Jones, Chris, Matney, Angela, Ward, Harold (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jones, Chris, Matney, Angela, Ward, Harold (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Aiden A. Bruen, Robert Silverman (1983)
Mathematische Zeitschrift
Similarity:
Landjev, Ivan, Rousseva, Assia (2008)
Serdica Journal of Computing
Similarity:
In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.
Blokhuis, A., Brouwer, A. E., Wilbrink, H. A. (2003)
Advances in Geometry
Similarity:
Hamada, Noboru, Maruta, Tatsuya (2010)
Serdica Journal of Computing
Similarity:
We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose...
Löwen, R., Steinke, G. F., Van Maldeghem, H. (2003)
Advances in Geometry
Similarity:
Ghinelli, D., Jungnickel, D. (2003)
Advances in Geometry
Similarity:
G. Hanssens, H. Van Maldeghem (1989)
Compositio Mathematica
Similarity:
Andrzej Matraś (1989)
Časopis pro pěstování matematiky
Similarity: