The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Morphisms of projective spaces over rings.”

Characterizations of semiperfect and perfect rings.

Weimin Xue (1996)

Publicacions Matemàtiques

Similarity:

We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective covers are adapted from Azumaya’s generalized projective covers.

Direct sums of semi-projective modules

Derya Keskin Tütüncü, Berke Kaleboğaz, Patrick F. Smith (2012)

Colloquium Mathematicae

Similarity:

We investigate when the direct sum of semi-projective modules is semi-projective. It is proved that if R is a right Ore domain with right quotient division ring Q ≠ R and X is a free right R-module then the right R-module Q ⊕ X is semi-projective if and only if there does not exist an R-epimorphism from X to Q.

Combinatorial Grassmannians

Andrzej Owsiejczuk (2007)

Formalized Mathematics

Similarity:

In the paper I construct the configuration G which is a partial linear space. It consists of k-element subsets of some base set as points and (k + 1)-element subsets as lines. The incidence is given by inclusion. I also introduce automorphisms of partial linear spaces and show that automorphisms of G are generated by permutations of the base set.