Displaying similar documents to “A note on upper bound for chromatic number of a graph.”

Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph

Piotr Rudnicki, Lorna Stewart (2012)

Formalized Mathematics

Similarity:

Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].

Vertex coloring the square of outerplanar graphs of low degree

Geir Agnarsson, Magnús M. Halldórsson (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Vertex colorings of the square of an outerplanar graph have received a lot of attention recently. In this article we prove that the chromatic number of the square of an outerplanar graph of maximum degree Δ = 6 is 7. The optimal upper bound for the chromatic number of the square of an outerplanar graph of maximum degree Δ ≠ 6 is known. Hence, this mentioned chromatic number of 7 is the last and only unknown upper bound of the chromatic number in terms of Δ.

Bounds on the Signed 2-Independence Number in Graphs

Lutz Volkmann (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a finite and simple graph with vertex set V (G), and let f V (G) → {−1, 1} be a two-valued function. If ∑x∈N|v| f(x) ≤ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed 2-independence function on G. The weight of a signed 2-independence function f is w(f) =∑v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions f on G, is the signed 2-independence number α2s(G) of G. In this work, we mainly present upper bounds...

Derived graphs of some graphs

Sudhir R. Jog, Satish P. Hande, Ivan Gutman, S. Burcu Bozkurt (2012)

Kragujevac Journal of Mathematics

Similarity: