### Existence and multiplicity of heteroclinic solutions for a non-autonomous boundary eigenvalue problem.

Malaguti, Luisa, Marcelli, Cristina (2003)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Malaguti, Luisa, Marcelli, Cristina (2003)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Georgiev, Svetlin G. (2005)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Li, Junjie (2004)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Bouziani, Abdelfatah, Merazga, Nabil (2006)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Tomiczek, Petr (2003)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Chen, Kuan-Ju (2005)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Moussaoui, Toufik, Precup, Radu (2009)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Pašić, Mervan, Županović, Vesna (2004)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Xie, Xuming (2003)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Sun, Jianzhong (2005)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Nguyen Thanh Long, Le Xuan Truong (2007)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Anna Milian (1992)

Annales Polonici Mathematici

Similarity:

We prove that under some assumptions a one-dimensional Itô equation has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness holds.

Kelevedjiev, Petio S. (2008)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity: