More on injectivity in locally presentable categories.
Rosicky, J., Adamek, J., Borceux, F. (2002)
Theory and Applications of Categories [electronic only]
Similarity:
Rosicky, J., Adamek, J., Borceux, F. (2002)
Theory and Applications of Categories [electronic only]
Similarity:
M. Hebert, J. Adamek, J. Rosický (2001)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Kelly, G.M., Lack, Stephen (2001)
Theory and Applications of Categories [electronic only]
Similarity:
G. M. Kelly (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jiří Adámek, Jiří Rosický (2004)
Czechoslovak Mathematical Journal
Similarity:
In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
C. Centazzo, J. Rosický, E. M. Vitale (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Hebert, Michel (2004)
Theory and Applications of Categories [electronic only]
Similarity:
H. Hu, M. Makkai (1994)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: