### Symbolic computation of Appell polynomials using Maple.

Alkahby, H., Ansong, G., Frempong-Mireku, P., Jalbout, A. (2001)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Alkahby, H., Ansong, G., Frempong-Mireku, P., Jalbout, A. (2001)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Brenti, Francesco (2002)

Séminaire Lotharingien de Combinatoire [electronic only]

Similarity:

Dunkl, Charles F. (2008)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Brunotte, Horst (2009)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

Descouens, François, Lascoux, Alain (2005)

Séminaire Lotharingien de Combinatoire [electronic only]

Similarity:

Koornwinder, Tom H. (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Aval, Jean-Christophe (2005)

Séminaire Lotharingien de Combinatoire [electronic only]

Similarity:

Kirillov, Anatol N. (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Mangazeev, Vladimir V. (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Grünbaum, F.Alberto, Rahman, Mizan (2010)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Lascoux, Alain (2005)

Séminaire Lotharingien de Combinatoire [electronic only]

Similarity:

Hassan, G.F. (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

Saïd Belmehdi, Stanisław Lewanowicz, André Ronveaux (1997)

Applicationes Mathematicae

Similarity:

Let ${P}_{k}$ be any sequence of classical orthogonal polynomials of a discrete variable. We give explicitly a recurrence relation (in k) for the coefficients in ${P}_{i}{P}_{j}={\sum}_{k}c(i,j,k){P}_{k}$, in terms of the coefficients σ and τ of the Pearson equation satisfied by the weight function ϱ, and the coefficients of the three-term recurrence relation and of two structure relations obeyed by ${P}_{k}$.