The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a general coarea inequality and applications.”

On some recent developments of the theory of sets of finite perimeter

Luigi Ambrosio (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this paper we describe some recent progress on the theory of sets of finite perimeter, currents, and rectifiability in metric spaces. We discuss the relation between intrinsic and extrinsic theories for rectifiability

Blow-up of regular submanifolds in Heisenberg groups and applications

Valentino Magnani (2006)

Open Mathematics

Similarity:

We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak...

Rectifiability and perimeter in step 2 Groups

Bruno Franchi, Raul Serapioni, Francesco Serra Cassano (2002)

Mathematica Bohemica

Similarity:

We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its generalization, considered by the authors, in Heisenberg groups. A structure theorem for sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs of these results, comments and an exhaustive bibliography can be found in our preprint (2001).

Invertible Carnot Groups

David M. Freeman (2014)

Analysis and Geometry in Metric Spaces

Similarity:

We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.