Efficient packing of unit squares in a square.
Kearney, Michael J., Shiu, Peter (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kearney, Michael J., Shiu, Peter (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Pavel Novotný (1996)
Archivum Mathematicum
Similarity:
Janusz Januszewski (2010)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
If n ≥ 3, then any sequence of squares of side lengths not greater than 1 whose total area does not exceed ¼(n+1) can be on-line packed into n unit squares.
Stromquist, Walter (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Tenner, Bridget Eileen (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Grannell, M.J., Griggs, T.S., Knor, M. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Janusz Januszewski (2010)
Colloquium Mathematicae
Similarity:
Let S be a square and let S' be a square of unit area with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S whose total area does not exceed 4/9 can be packed translatively into S'.
Shattuck, Mark (2009)
Integers
Similarity:
Władysław Kulpa, Lesƚaw Socha, Marian Turzański (2000)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: