Preservers of the rank of matrices over a field.
Kalinowski, Józef (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Kalinowski, Józef (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Beasley, LeRoy B. (1999)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Pedregal, Pablo, Šverák, Vladimír (1998)
Journal of Convex Analysis
Similarity:
Štefan Schwarz (1985)
Mathematica Slovaca
Similarity:
Boston, Nigel (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Harald K. Wimmer, Allen D. Ziebur (1975)
Czechoslovak Mathematical Journal
Similarity:
Cao, Chongguang, Tang, Xiaomin (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Nakazi, Takahiko, Osawa, Tomoko (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity: