The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Grothendieck bialgebras, partition lattices, and symmetric functions in noncommutative variables.”

Koszul duality for N-Koszul algebras

Roberto Martínez-Villa, Manuel Saorín (2005)

Colloquium Mathematicae

Similarity:

The correspondence between the category of modules over a graded algebra and the category of graded modules over its Yoneda algebra was studied in [8] by means of A algebras; this relation is very well understood for Koszul algebras (see for example [5],[6]). It is of interest to look for cases such that there exists a duality generalizing the Koszul situation. In this paper we will study N-Koszul algebras [1], [7], [9] for which such a duality exists.

Smash (co)products and skew pairings.

José N. Alonso Alvarez, José Manuel Fernández Vilaboa, Ramón González Rodríguez (2001)

Publicacions Matemàtiques

Similarity:

Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category γD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×] H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×] H is the Hopf algebra defined by Doi and Takeuchi. ...