The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Asymptotic dimension of coarse spaces.”

Coarse dimensions and partitions of unity.

N. Brodskiy, J. Dydak (2008)

RACSAM

Similarity:

Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.

Dimension-raising maps in a large scale

Takahisa Miyata, Žiga Virk (2013)

Fundamenta Mathematicae

Similarity:

Hurewicz's dimension-raising theorem states that dim Y ≤ dim X + n for every n-to-1 map f: X → Y. In this paper we introduce a new notion of finite-to-one like map in a large scale setting. Using this notion we formulate a dimension-raising type theorem for asymptotic dimension and asymptotic Assouad-Nagata dimension. It is also well-known (Hurewicz's finite-to-one mapping theorem) that dim X ≤ n if and only if there exists an (n+1)-to-1 map from a 0-dimensional space onto X. We formulate...