Displaying similar documents to “Knot and braid invariants from contact homology. II.”

Virtual knot theory-unsolved problems

Roger Fenn, Louis H. Kauffman, Vassily O. Manturov (2005)

Fundamenta Mathematicae

Similarity:

The present paper gives a quick survey of virtual and classical knot theory and presents a list of unsolved problems about virtual knots and links. These are all problems in low-dimensional topology with a special emphasis on virtual knots. In particular, we touch new approaches to knot invariants such as biquandles and Khovanov homology theory. Connections to other geometrical and combinatorial aspects are also discussed.

The equation [B,(A-1)(A,B)] = 0 and virtual knots and links

Stephen Budden, Roger Fenn (2004)

Fundamenta Mathematicae

Similarity:

Let A, B be invertible, non-commuting elements of a ring R. Suppose that A-1 is also invertible and that the equation [B,(A-1)(A,B)] = 0 called the fundamental equation is satisfied. Then this defines a representation of the algebra ℱ = A, B | [B,(A-1)(A,B)] = 0. An invariant R-module can then be defined for any diagram of a (virtual) knot or link. This halves the number of previously known relations and allows us to give a complete solution in the case when R is the quaternions. ...