The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Distance domination and distance irredundance in graphs.”

Distance in graphs

Roger C. Entringer, Douglas E. Jackson, D. A. Snyder (1976)

Czechoslovak Mathematical Journal

Similarity:

Two Short Proofs on Total Domination

Allan Bickle (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.

One-two descriptor of graphs

K. CH. Das, I. Gutman, D. Vukičević (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Similarity:

On the doubly connected domination number of a graph

Joanna Cyman, Magdalena Lemańska, Joanna Raczek (2006)

Open Mathematics

Similarity:

For a given connected graph G = (V, E), a set D V ( G ) is a doubly connected dominating set if it is dominating and both 〈D〉 and 〈V (G)-D〉 are connected. The cardinality of the minimum doubly connected dominating set in G is the doubly connected domination number. We investigate several properties of doubly connected dominating sets and give some bounds on the doubly connected domination number.

The vertex monophonic number of a graph

A.P. Santhakumaran, P. Titus (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G of order p ≥ 2 and a vertex x of G, a set S ⊆ V(G) is an x-monophonic set of G if each vertex v ∈ V(G) lies on an x -y monophonic path for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted by mₓ(G). An x-monophonic set of cardinality mₓ(G) is called a mₓ-set of G. We determine bounds for it and characterize graphs which realize these bounds. A connected graph of order p with vertex monophonic...

Rainbow Vertex-Connection and Forbidden Subgraphs

Wenjing Li, Xueliang Li, Jingshu Zhang (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A path in a vertex-colored graph is called vertex-rainbow if its internal vertices have pairwise distinct colors. A vertex-colored graph G is rainbow vertex-connected if for any two distinct vertices of G, there is a vertex-rainbow path connecting them. For a connected graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is defined as the minimum number of colors that are required to make G rainbow vertex-connected. In this paper, we find all the families ℱ of connected...

The Distance Roman Domination Numbers of Graphs

Hamideh Aram, Sepideh Norouzian, Seyed Mahmoud Sheikholeslami (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value w(f) =∑v∈V f(v). The k-distance Roman domination number of a graph G, denoted by γkR (D), equals the minimum weight of a k-distance Roman dominating...