The search session has expired. Please query the service again.

Displaying similar documents to “Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces.”

Regularity results for infinite dimensional diffusions. A Malliavin calculus approach

Stefano Bonaccorsi, Marco Fuhrman (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We prove some smoothing properties for the transition semigroup associated to a nonlinear stochastic equation in a Hilbert space. The proof introduces some tools from the Malliavin calculus and is based on a integration by parts formula.

Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation

Giuseppe Da Prato, Arnaud Debussche (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup P t φ does exist for any bounded φ ; and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.

Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process

Zdzisław Brzeźniak, Szymon Peszat (1999)

Studia Mathematica

Similarity:

Stochastic partial differential equations on d are considered. The noise is supposed to be a spatially homogeneous Wiener process. Using the theory of stochastic integration in Banach spaces we show the existence of a Markovian solution in a certain weighted L q -space. Then we obtain the existence of a space continuous solution by means of the Da Prato, Kwapień and Zabczyk factorization identity for stochastic convolutions.